Prove: $\frac{\sin 5A}{\sin A} - \frac{\cos 5A}{\cos A} = 4 \cos 2A$.
Solution
We must show that $\frac{\sin 5A}{\sin A} - \frac{\cos 5A}{\cos A} = 4 \cos 2A$. We use the trigonometric identities to show that the Left side of the equation is equal to the Right side of the equation.
LHS
$=\frac{\sin 5A}{\sin A} - \frac{\cos 5A}{\cos A}$
Take the LCM and simplify,
$=\frac{\sin 5A \cdot \cos A - \cos 5A \cdot \sin A}{\sin A \cdot \cos A}$
Use the trigonometric identity for $\sin (A-B) = \sin A \cos B - \cos A \sin B$.
$=\frac{\sin (5A -A)}{\sin A \cdot \cos A}$
$=\frac{\sin (4A)}{\sin A \cdot \cos A}$
$=\frac{\sin (2*2A)}{\sin A \cdot \cos A}$
$=\frac{2 \sin 2A \cdot \cos 2A}{\sin A \cdot \cos A}$
Multiply and divide the expression by 2, we get,
$=\frac{2 \cdot 2 \sin 2A \cdot \cos 2A}{2sinAcosA}$
$=\frac{4 \sin 2A \cdot \cos 2A}{\sin 2A}$
= 4 cos2A
RHS
Hence, we have shown that $\frac{\sin 5A}{\sin A} - \frac{\cos 5A}{\cos A} = 4 \cos 2A$.