Class 10 Algebraic Fraction Exercise 8 Solutions | Maths Links Readmore Publishers & Distributors

Disclaimer

The following solutions are contributed by the Sci-Pi community. Each solution that appears on this page has undergone verification by the moderators. However, we highly encourage you to view these solutions as a guide rather than copying everything mentioned here.

Solve:

Simplify:

Question 1)
Asked by Atith Adhikari

Simplify: $\rm \frac{x^2}{y(x-y)} + \frac{y^2}{x(y-x)}$

visibility 0
chat_bubble_outline 1
Atith Adhikari Atith Adhikari · 1 year ago
Verified

Solution

Given,

$\rm \frac{x^2}{y ( x- y)} + \frac{y^2}{x (y - x)}$

We know, $\rm (y - x) = - (x - y)$

$\rm = \frac{x^2}{y (x - y)} + \frac{y^2}{x \{ - (x-y) \}}$

$\rm = \frac{x^2}{y (x-y)} - \frac{y^2}{x (x -y)}$

Taking LCM and simplifying the equation, we get,

$\rm = \frac{ x^2 \cdot x - y^2 \cdot y}{xy (x - y)}$

$\rm = \frac{x^3 - y^3}{xy (x - y)}$

Using the factorization formula for $\rm (a^3 - b^3) = (a-b)(a^2 + ab + b^2)$, we get,

$\rm = \frac{ (x - y)(x^2 + xy + y^2)}{xy (x -y)}$

$\rm = \frac{ x^2 + xy + y^2}{xy}$

$$\rm \therefore \frac{x^2}{y (x - y)} + \frac{y^2}{x (y -x)} = \frac{x^2 + xy + y^2}{xy}$$

0
Question 2)
Asked by Atith Adhikari

Simplify: $\rm \frac{x^2}{y(x+y)} + \frac{y^2}{x(x+y)}$

visibility 0
chat_bubble_outline 1
Atith Adhikari Atith Adhikari · 1 year ago
Verified

Solution

Given

$\rm \frac{x^2}{y ( x  + y)} + \frac{y^2}{x ( x + y)}$

$\rm = \frac{x^2}{y (x + y)} \cdot \frac{x}{x} + \frac{y^2}{x (x + y)} \cdot \frac{y}{y}$

$\rm = \frac{x^2 \cdot x}{xy (x + y)} + \frac{y^2 \cdot y}{xy (x + y)}$

$\rm = \frac{x^3}{xy ( x + y)} + \frac{y^3}{xy ( x + y)}$

$\rm = \frac{x^3 + y^3}{xy (x + y)}$

Using the factor formula for $\rm (x^3 + y^3 = (x + y)(x^2 - xy + y^2)$

$\rm = \frac{ (x + y)(x^2 - xy + y^2)}{xy ( x + y)}$

$\rm = \frac{x^2 - xy + y^2}{xy}$

$\rm \therefore \frac{x^2}{y ( x  + y)} + \frac{y^2}{x ( x + y)}= \frac{x^2 - xy + y^2}{xy}$

Hence, the required simplified form of the above expression is found.

0
Question 3)
Question 4)
Asked by Atith Adhikari

Simplify: $\rm \frac{a^2 + b^2}{ab} - \frac{b^2}{a(a+b)} - \frac{a^2}{b(a+b)}$

visibility 0
chat_bubble_outline 1
Atith Adhikari Atith Adhikari · 1 year ago
Verified

Solution

Given

$\rm \frac{a^{2} + b^{2}}{ab} - \frac{b^{2}}{a(a+b)} - \frac{a^{2}}{b (a+b)}$

Let us identify the terms as first, second, and third from the left to the right. Then, multiply and divide the first term by \( \rm (a+b) \), the second term by \( \rm b \), and the third term by \( \rm a \).

$\rm = \frac{a^{2} + b^{2}}{ab} \cdot \frac{a +b}{a+b} -  \frac{b^{2}}{a(a+b)} \cdot \frac{b}{b} - \frac{a^{2}}{b (a+b)} \cdot \frac{a}{a}$

$\rm =  \frac{(a^{2} + b^{2})(a +b)}{ab(a+b)}  - \frac{b^{3}}{ab(a+b)} - \frac{a^{3}}{b(a+b)}$

The denominators of the first, second, and third terms are common. So, we simplify the expression as shown below.

$\rm = \frac{ (a+b)(a^{2} + b^{2}) - b^{3} - a^{3}}{ab (a +b)}$

$\rm = \frac{a (a^{2} + b^{2}) + b(a^{2} + b^{2}) - b^{3} -  a^{3}}{ab ( a + b)}$

$\rm = \frac{a^{3} + ab^{2} + a^{2}b + b^{3} - b^{3} - a^{3}}{ab ( a + b)}$

$\rm = \frac{ ab^{2} + a^{2} b}{ab ( a + b)}$

$\rm = \frac{ ab (a + b) }{ab ( a + b)}$

$\rm = 1$

Hence, $$\rm \frac{a^{2} + b^{2}}{ab} - \frac{b^{2}}{a(a+b)} - \frac{a^{2}}{b (a+b)} = 1$$

0
Question 5)
Asked by Atith Adhikari

Simplify: $\rm \frac{a-b}{a+b} - \frac{a+b}{a-b} + \frac{2ab}{a^2 - b^2}$

visibility 0
chat_bubble_outline 1
Atith Adhikari Atith Adhikari · 1 year ago
Verified

Solution

Given

$\rm \frac{a - b}{a + b} - \frac{a + b}{a - b} + \frac{2ab}{a^2 - b^2}$

$\rm = \frac{a - b}{a + b} \cdot \frac{a - b}{a - b} - \frac{a + b}{a - b} \cdot \frac{a + b}{a + b} + \frac{2ab}{a^2 - b^2}$

$\rm = \frac{ (a-b)(a-b)}{(a+b)(a-b)} - \frac{(a+b)(a+b)}{(a-b)(a+b)} + \frac{2ab}{a^2 - b^2}$

Using the formula for $\rm (a - b)(a + b) = a^2 - b^2$, we get,

$\rm = \frac{ (a - b)^2}{ a^2 - b^2} - \frac{ (a + b)^2}{a^2 - b^2} + \frac{2ab}{a^2 - b^2}$

$\rm = \frac{ (a - b)^2 - (a + b)^2 + 2ab}{a^2 - b^2}$

$\rm = \frac{ a^2 - 2ab + b^2 - (a^2 + 2ab + b^2) + 2ab}{a^2 - b^2}$

$\rm = \frac{ a^2 + b^2 - a^2 - 2ab - b^2}{ a^2 - b^2}$

$\rm = - \frac{ 2ab}{a^2 - b^2}$

Hence, $\rm \frac{a - b}{a + b} - \frac{a + b}{a - b} + \frac{2ab}{a^2 - b^2} = - \frac{ 2ab}{a^2 - b^2}$

0
Question 6)
Question 7)
Question 8)
Question 9)
Question 10)
Question 11)
Question 12)
Question 13)
Question 14)
Question 15)
Question 16)
Question 17)
Question 18)
Question 19)
Question 20)
Question 21)
Question 22)
Question 23)
Question 24)
Question 25)

Prove the following:

Question 26)
Question 27)
Question 28)
Question 29)
Question 30)
Question 31)
Question 32)
Question 33)

Find the values of a and b:

Question 34)
Asked by Atith Adhikari

Find a: $\rm \frac{a}{x-y} - \frac{x+y}{x^2 - y^2} = 0$

visibility 0
chat_bubble_outline 1
Atith Adhikari Atith Adhikari · 1 year ago
Verified

Solution

Given

$\rm \frac{a}{x - y} - \frac{x + y}{x^{2} - y^{2}}$

Using the factorization formula for $\rm (x^{2} - y^{2}) = (x + y)(x - y)$, we get,

$\rm = \frac{a}{x - y} - \frac{ x + y}{ (x + y)(x - y)}$

$\rm = \frac{a}{x-y} - \frac{1}{ x - y}$

$\rm = \frac{a - 1}{x - y}$

$\rm \therefore \frac{a}{x - y} - \frac{x + y}{x^{2} - y^{2}}= \frac{a - 1}{x - y}$

0
Question 35)
Question 36)
Question 37)
Asked by Atith Adhikari

Find b: $\rm \frac{b}{x-2} + \frac{x+3}{2-x} = \frac{1-x}{x-2}$

visibility 0
chat_bubble_outline 1
Atith Adhikari Atith Adhikari · 1 year ago
Verified

Solution

Given

$\rm \frac{b}{x - 2} + \frac{x + 3}{2 - x} = \frac{1 - x}{x - 2}$

$\rm or, \frac{b}{x - 2} = \frac{1 - x}{x - 2} - \frac{x + 3}{2 - x}$

$\rm or, \frac{b}{x - 2} = \frac{1 - x}{x - 2} - \frac{x + 3}{ - (x - 2)}$

$\rm or, \frac{b}{x - 2} = \frac{1 - x}{x - 2} + \frac{x + 3}{x - 2}$

$\rm or, \frac{b}{x - 2} = \frac{ (1 - x) + (x + 3)}{x - 2}$

$\rm or, \frac{b}{x - 2} = \frac{1 - x + x + 3}{x - 2}$

$\rm or, \frac{b}{x - 2} = \frac{4}{x - 2}$

The expressions in the denominators of both sides of the equation are equal. So, the numerators of these expressions must be equal to hold the equality.

$\rm \therefore b = 4$

Hence, the required value of b is 4.

0
Question 38)
Asked by Atith Adhikari

Find b: $\rm \frac{b}{x^2 - 5x} - \frac{x}{5x - 25} = - \frac{x + 5}{5x}$

visibility 0
chat_bubble_outline 1
Atith Adhikari Atith Adhikari · 1 year ago
Verified

Solution

Given

$\rm \frac{b}{x^2 - 5x} - \frac{x}{5x - 25} = - \frac{x + 5}{5x}$

$\rm or, \frac{b}{x(x - 5)} - \frac{x}{5(x - 5)} = - \frac{x + 5}{5x}$

$\rm or, \frac{b}{x (x - 5)} = - \frac{x + 5}{5x} + \frac{x}{5 (x - 5)}$

$\rm or, \frac{b}{x (x - 5)} = - \frac{x + 5}{5x} \cdot \frac{(x - 5)}{(x - 5)} + \frac{x}{5 (x - 5)} \cdot \frac{x}{x}$

$\rm or, \frac{b}{x (x - 5)} = - \frac{ (x - 5)(x + 5) }{5x ( x - 5)} + \frac{x \cdot x}{5 (x - 5) \cdot x}$

$\rm or, \frac{b}{x (x - 5)} = - \frac{ x^2 - 25 }{5x ( x - 5)} + \frac{ x^2 }{5x (x - 5)}$

$\rm or, \frac{b}{x (x - 5)} = \frac{ - (x^2 - 25) + x^2 }{5x ( x - 5) }$

$\rm or, \frac{b}{x (x - 5)} = \frac{ - x^2 + 25 + x^2}{5x (x - 5)}$

$\rm or, \frac{b}{x (x - 5)} = \frac{ 25}{5x (x - 5)}$

$\rm or, \frac{b}{x ( x - 5)} = \frac{ 5 \cdot 5}{5x (x - 5)}$

$\rm or, \frac{b}{x (x - 5)} = \frac{5}{x (x - 5)}$

The expressions in the denominators of both sides of the equation are equal. So, the numerators of these expressions must be equal to hold the equality.

$\rm \therefore b = 5$

Hence, the required value of b is 5.

0
Question 39)
Asked by Atith Adhikari

Find a,b: $\rm \frac{a}{2x-3} - \frac{b}{3x + 4} = \frac{x + 7}{6x^2 -x-12}$

visibility 0
chat_bubble_outline 1
Atith Adhikari Atith Adhikari · 1 year ago
Verified

Solution

Given

$\rm \frac{a}{2x - 3} - \frac{b}{3x + 4} = \frac{x + 7}{6x^2 - x - 12}$

Solving the Left-Hand Side of the equation first, we get,

$\rm \frac{a}{2x- 3} - \frac{b}{3x + 4}$

$\rm = \frac{a}{2x - 3} \cdot \frac{3x + 4}{3x + 4} - \frac{b}{3x + 4} \cdot \frac{2x - 3}{2x - 3}$

Simplifying the expression

$\rm = \frac{a (3x + 4)}{(2x-3)(3x + 4)} - \frac{ b(2x - 3)}{(3x + 4)(2x - 3)}$

$\rm = \frac{ a(3x + 4) - b(2x - 3)}{ (2x -3)(3x + 4) }$

$\rm = \frac{ 3ax + 4a - 2bx + 3b }{ (2x - 3)(3x  + 4)}$

$\rm = \frac{ 3ax - 2bx + 4a + 3b }{ 2x (3x + 4) - 3(3x + 4)}$

$\rm = \frac{ (3a - 2b)x + (4a + 3b) }{ 6x^2 + 8x - 9x - 12}$

$\rm = \frac{ (3a - 2b)x + (4a + 3b)}{6x^2 - x - 12}$

From the given, the expression obtained above for the LHS is equal to the RHS. So,

$\rm or, \frac{ (3a - 2b)x + (4a + 3b)}{6x^2  - x - 12} = \frac{x + 7}{6x^2 - x - 12}$

The denominators on both sides of the equation are the same, so we equate their numerators.

$\rm or, (3a - 2b) x + (4a + 3b) = x + 7$

For the above equation to hold, the coefficient of like terms on both sides of the equation must be the same.

We equate the coefficients of x, we get,

$\rm or, 3a - 2b = 1$

$\rm or, 3a = 1 + 2b$

$\rm or, a = \frac{1 + 2b}{3}$ – (1)

We equate the coefficients of constant terms, and we get,

$\rm or, 4a + 3b = 7$

$\rm or, 4a = 7 - 3b$

$\rm or, a = \frac{7 - 3b}{4}$ – (2)

From equations (1) and (2), we get,

$\rm or, \frac{1 + 2b}{3} = \frac{7 - 3b}{4}$

Multiplying both sides of the equation by 12, we get,

$\rm or, \frac{1 + 2b}{3} \cdot 12 = \frac{7 - 3b}{4} \cdot 12$

$\rm or, (1 + 2b) \cdot 4 = (7 - 3b) \cdot 3$

$\rm or, 4 + 8b = 21 - 9b$

$\rm or, 8b + 9b = 21 - 4$

$\rm or, 17b = 17$

$\rm \therefore b = 1$

We put the value of b = 1 in equation (1) to find the value of a, we get,

$\rm a = \frac{1 + 2 \cdot 1}{3} = \frac{1 + 2}{3} = \frac{3}{3}$

$\rm \therefore a = 1$

Hence, the required solution is (a,b) = (1,1).

0
Question 40)
Question 41)

About the Textbook

Name: Maths Links - Grade 10
Author: D.R. Simkhada
Publisher: Readmore Publishers & Distributors
TU Road, Kuleshwor, Kathmandu, Nepal